들어가기 전에 이제까지 딥 러닝 모델은 CNN(Convolution Neural Network), RNN(Recurrent Neural Network), Transformer 등 다양한 신경망 모델 종류로 발전해 왔다. 그렇지만 복잡한 구조 또는 관계를 지니는 문제를 임베딩하는 데 한계가 있어왔고, 이러한 문제를 해결할 수 있는 모델로서 그래프(Graph)를 사용한 신경망 모델이 제안된다. 이번 글에서는 그래프를 사용한 딥 러닝 모델인 GNN의 정의와 의의에 관해 살펴보고, GNN 모델을 해석하는 관점에서 제시된 여러 종류의 GNN 모델에 관해 살펴보자. 그래프(Graph)의 정의와 사용 그래프는 정보과학을 공부하면 항상 빼 놓을 수 없는 중요한 자료구조이다. 프로그래밍 문제를 푼 사람들이라면 알겠지만 ..
GNN(Graph Neural Network)의 정의와 특징 그리고 추천시스템에서의 GNN 계열 모델
들어가기 전에 이제까지 딥 러닝 모델은 CNN(Convolution Neural Network), RNN(Recurrent Neural Network), Transformer 등 다양한 신경망 모델 종류로 발전해 왔다. 그렇지만 복잡한 구조 또는 관계를 지니는 문제를 임베딩하는 데 한계가 있어왔고, 이러한 문제를 해결할 수 있는 모델로서 그래프(Graph)를 사용한 신경망 모델이 제안된다. 이번 글에서는 그래프를 사용한 딥 러닝 모델인 GNN의 정의와 의의에 관해 살펴보고, GNN 모델을 해석하는 관점에서 제시된 여러 종류의 GNN 모델에 관해 살펴보자. 그래프(Graph)의 정의와 사용 그래프는 정보과학을 공부하면 항상 빼 놓을 수 없는 중요한 자료구조이다. 프로그래밍 문제를 푼 사람들이라면 알겠지만 ..
2023.01.02