AI/AI 기본
-
RecVAE 모델을 분석하기 위해 논문을 읽으면서 VAE에 관해 모르거나 잘못 알고 있던 내용이 많다는 걸 알게 되어 이를 정리하고자 한다. 특히 ELBO 부분이 그전에는 잘 이해가 안 갔는데, 이번에 붙잡고 공부하면서 좀 더 명확히 이해할 수 있게 되었다. 그리고 VAE의 ELBO 유도 과정을 완전히 잘못 알고 있어서 복습하면서 정정했다. VAE(Varational AutoEncoder) 한번에 이해하기 위의 노트 필기의 흐름을 따라가보면 VAE의 ELBO가 왜 loss function에서 나오는 건지와 그 학습 방법을 이해할 수 있다. VAE 계열 모델의 ELBO 분석 VAE(Variational Autoencoders) [출처] https://commons.wikimedia.org/wiki/File..
VAE 계열 모델의 ELBO(Evidence Lower Bound) 분석RecVAE 모델을 분석하기 위해 논문을 읽으면서 VAE에 관해 모르거나 잘못 알고 있던 내용이 많다는 걸 알게 되어 이를 정리하고자 한다. 특히 ELBO 부분이 그전에는 잘 이해가 안 갔는데, 이번에 붙잡고 공부하면서 좀 더 명확히 이해할 수 있게 되었다. 그리고 VAE의 ELBO 유도 과정을 완전히 잘못 알고 있어서 복습하면서 정정했다. VAE(Varational AutoEncoder) 한번에 이해하기 위의 노트 필기의 흐름을 따라가보면 VAE의 ELBO가 왜 loss function에서 나오는 건지와 그 학습 방법을 이해할 수 있다. VAE 계열 모델의 ELBO 분석 VAE(Variational Autoencoders) [출처] https://commons.wikimedia.org/wiki/File..
2023.05.23 -
이 글은 아직 미완 상태이며, 곧 완성하여 마무리할 예정입니다. Dynamic Bayesian Network의 일종인 Hidden Markov Model은 AI를 공부할 때 종종 필요로 하는 개념이며, 특히 이 모델의 inference에서 기본적으로 쓰이는 성질과 알고리즘이 꽤 자주 쓰인다. 언젠가 한번 즈음 정리를 해야겠다고 다짐을 했었는데, 현재 글 작성 시점 기준 중간고사를 포함하여 우선순위가 높은 수많은 일 때문에 여유 있을 때 틈틈이 작성하여 완성하고자 한다. 사실 이전에 공부하면서 미리 따로 노트 필기로 정리한 내용이기에 먼저 노트 필기를 첨부하고, 시간이 생길 때마다 글로 채워가고자 한다. HMM(Hidden Markov Model)이란? HMM의 Inference 꼭 알아두어야 할 Prel..
Hidden Markov Model과 Filtering, Forwarding 그리고 Viterbi Algorithm이 글은 아직 미완 상태이며, 곧 완성하여 마무리할 예정입니다. Dynamic Bayesian Network의 일종인 Hidden Markov Model은 AI를 공부할 때 종종 필요로 하는 개념이며, 특히 이 모델의 inference에서 기본적으로 쓰이는 성질과 알고리즘이 꽤 자주 쓰인다. 언젠가 한번 즈음 정리를 해야겠다고 다짐을 했었는데, 현재 글 작성 시점 기준 중간고사를 포함하여 우선순위가 높은 수많은 일 때문에 여유 있을 때 틈틈이 작성하여 완성하고자 한다. 사실 이전에 공부하면서 미리 따로 노트 필기로 정리한 내용이기에 먼저 노트 필기를 첨부하고, 시간이 생길 때마다 글로 채워가고자 한다. HMM(Hidden Markov Model)이란? HMM의 Inference 꼭 알아두어야 할 Prel..
2023.04.13 -
앞서 우리는 입력으로 주어진 sequence에서 어떠한 부분에 주목할지를 예측에 반영하는 attention 기법을 배웠다. 이러한 Self-Attention에서 좀 더 나아가 head를 여러 개 사용하여 주어진 데이터를 이해하려는 Multi-Head Attention 기법과 이외 'Attention is All You Need' 논문에서 소개되었던 다른 기법들도 이해해 보고자 한다. 이전의 transformer에 관해 다룬 포스트의 내용을 기반으로 하므로 아래의 글을 참조하면 이 글을 이해하는 데 도움이 될 수 있다. Self-Attention을 사용하는 Transformer Self-Attention을 사용하는 Transformer(트랜스포머) Sequential Model Sequential Mode..
Transformer의 Multi-Head Attention과 Transformer에서 쓰인 다양한 기법앞서 우리는 입력으로 주어진 sequence에서 어떠한 부분에 주목할지를 예측에 반영하는 attention 기법을 배웠다. 이러한 Self-Attention에서 좀 더 나아가 head를 여러 개 사용하여 주어진 데이터를 이해하려는 Multi-Head Attention 기법과 이외 'Attention is All You Need' 논문에서 소개되었던 다른 기법들도 이해해 보고자 한다. 이전의 transformer에 관해 다룬 포스트의 내용을 기반으로 하므로 아래의 글을 참조하면 이 글을 이해하는 데 도움이 될 수 있다. Self-Attention을 사용하는 Transformer Self-Attention을 사용하는 Transformer(트랜스포머) Sequential Model Sequential Mode..
2023.04.11 -
Adversarial Search Adversarial Search란? Adversarial search는 '적대적인'이라는 'adversarial'의 의미에서 유추할 수 있는 것처럼 둘 이상의 대상(multi-agent)이 서로 다른 목표를 달성하기 위해 적대적인 관계에서 경쟁하는 것이다. 다른 대상의 행동이 자신의 성공에 영향을 끼치므로 자신의 목표를 달성하기 위해 최선의 행동을 선택할 때 다른 대상이 선택할 가능성이 있는 행동을 모두 고려해야 한다. 우리가 일상에서 자주 하는 게임(game)이 바로 대표적인 adversarial search이며, 자신이 이기기 위해 다른 플레이어의 행동을 고려하여 가장 좋은 수를 선택하려고 한다. 이러한 맥락에서 adversarial search를 game sear..
[인공지능 기초] Adversarial Search - Minimax Search와 Alpha-beta PruningAdversarial Search Adversarial Search란? Adversarial search는 '적대적인'이라는 'adversarial'의 의미에서 유추할 수 있는 것처럼 둘 이상의 대상(multi-agent)이 서로 다른 목표를 달성하기 위해 적대적인 관계에서 경쟁하는 것이다. 다른 대상의 행동이 자신의 성공에 영향을 끼치므로 자신의 목표를 달성하기 위해 최선의 행동을 선택할 때 다른 대상이 선택할 가능성이 있는 행동을 모두 고려해야 한다. 우리가 일상에서 자주 하는 게임(game)이 바로 대표적인 adversarial search이며, 자신이 이기기 위해 다른 플레이어의 행동을 고려하여 가장 좋은 수를 선택하려고 한다. 이러한 맥락에서 adversarial search를 game sear..
2022.10.09 -
들어가기 전에 'Attention is All You Need'라는 논문을 필두로 CV, NLP, RecSys 등 많은 분야와 여러 AI 대회에서 Transformer를 사용하는 경우는 이제 너무나 흔한 일이 되었다. 그만큼 Self-Attention을 기반으로 하는 Transformer가 딥 러닝 분야에 막대한 영향을 끼친 breakthrough라고 말해도 과언이 아니다. 그러나 과연 Transformer를 어떠한 경우에서든 상관없이 무작정 사용하는 것이 바람직한가에 관해서 의문이 들 수 있다. Transformer라고 항상 만능이 아니므로 모델을 사용할 목적과 환경을 고려해야 할 필요가 있으며, 특히 데이터의 상태와 양에 따라 Transformer의 효율이 좋을 수도 있고 나쁠 수도 있다. 이번 글에..
Transformer를 사용하는 것이 항상 좋을까?들어가기 전에 'Attention is All You Need'라는 논문을 필두로 CV, NLP, RecSys 등 많은 분야와 여러 AI 대회에서 Transformer를 사용하는 경우는 이제 너무나 흔한 일이 되었다. 그만큼 Self-Attention을 기반으로 하는 Transformer가 딥 러닝 분야에 막대한 영향을 끼친 breakthrough라고 말해도 과언이 아니다. 그러나 과연 Transformer를 어떠한 경우에서든 상관없이 무작정 사용하는 것이 바람직한가에 관해서 의문이 들 수 있다. Transformer라고 항상 만능이 아니므로 모델을 사용할 목적과 환경을 고려해야 할 필요가 있으며, 특히 데이터의 상태와 양에 따라 Transformer의 효율이 좋을 수도 있고 나쁠 수도 있다. 이번 글에..
2022.08.31 -
Transformer를 이해하려면 Seq2Seq with Attention 모델이 나오게 된 배경과 그 방법을 이해하는 것이 필요하다. 특히 transformer의 self-attention에 관해 한줄로 요약하면, Seq2Seq with Attention에서 decoder의 hidden state와 encoder의 hidden state를 구하는 과정에서 LSTM을 빼 버리고 이를 병렬적으로 처리하는 대신에 hidden state의 attention을 구하는 데 필요한 hidden state를 역할에 따라서 서로 다른 벡터로 구성하여 학습을 수행하는 방법이다. 비문이어서 이해하기 어려울 수 있지만 Seq2Seq with Attention에 관한 이해가 선행되면 transformer의 self atten..
Transformer의 Self Attention에 관한 소개와 Seq2Seq with Attention 모델과의 비교Transformer를 이해하려면 Seq2Seq with Attention 모델이 나오게 된 배경과 그 방법을 이해하는 것이 필요하다. 특히 transformer의 self-attention에 관해 한줄로 요약하면, Seq2Seq with Attention에서 decoder의 hidden state와 encoder의 hidden state를 구하는 과정에서 LSTM을 빼 버리고 이를 병렬적으로 처리하는 대신에 hidden state의 attention을 구하는 데 필요한 hidden state를 역할에 따라서 서로 다른 벡터로 구성하여 학습을 수행하는 방법이다. 비문이어서 이해하기 어려울 수 있지만 Seq2Seq with Attention에 관한 이해가 선행되면 transformer의 self atten..
2022.07.23 -
RNN 계열 모델인 LSTM을 여러개 이어서 encoder와 deocder로 만든 Seq2Seq에 관해 먼저 알아보고, 매 time step이 지날수록 이 Seq2Seq의 hidden state에 점차 많은 정보를 욱여넣게 되는 단점을 극복한 Seq2Seq with Attention에 관해 알아보고자 한다. 간단히 말하면 Seq2Seq with Attention은 decoder의 hidden state로 해당 time step에서의 결과를 내보낼 때, encoder의 어떠한 hidden state에 주목할지를 반영하여 해당 time step에서의 output을 내는 모델이다. Seq2Seq Seq2Seq란? Seq2Seq 모델은 RNN의 구조 중에서 many to many의 형태에 해당된다고 볼 수 있으..
Attention 기법을 사용한 Seq2Seq with AttentionRNN 계열 모델인 LSTM을 여러개 이어서 encoder와 deocder로 만든 Seq2Seq에 관해 먼저 알아보고, 매 time step이 지날수록 이 Seq2Seq의 hidden state에 점차 많은 정보를 욱여넣게 되는 단점을 극복한 Seq2Seq with Attention에 관해 알아보고자 한다. 간단히 말하면 Seq2Seq with Attention은 decoder의 hidden state로 해당 time step에서의 결과를 내보낼 때, encoder의 어떠한 hidden state에 주목할지를 반영하여 해당 time step에서의 output을 내는 모델이다. Seq2Seq Seq2Seq란? Seq2Seq 모델은 RNN의 구조 중에서 many to many의 형태에 해당된다고 볼 수 있으..
2022.07.14 -
Generative Model Generative Model이란? Discriminative Model과 Generative Model 일반적으로 머신러닝에서 모델을 크게 두 범주로 분류하자면 discriminative model과 generative model로 구분할 수 있다. Discriminative model은 데이터의 레이블링을 예측하는 것처럼 decision boundary를 잘 결정하는 것이 목표인 모델이며, 우리가 일반적으로 잘 아는 classficiation, segmentation, detection과 같은 task를 잘 수행하는 모델로 볼 수 있다. 그에 반해 생성 모델(generative model)은 기본적으로 어떠한 입력이 주어졌을 때 이를 모델에 통과하여 output을 내는데..
생성 모델(Generative Model)과 VAE 그리고 GANGenerative Model Generative Model이란? Discriminative Model과 Generative Model 일반적으로 머신러닝에서 모델을 크게 두 범주로 분류하자면 discriminative model과 generative model로 구분할 수 있다. Discriminative model은 데이터의 레이블링을 예측하는 것처럼 decision boundary를 잘 결정하는 것이 목표인 모델이며, 우리가 일반적으로 잘 아는 classficiation, segmentation, detection과 같은 task를 잘 수행하는 모델로 볼 수 있다. 그에 반해 생성 모델(generative model)은 기본적으로 어떠한 입력이 주어졌을 때 이를 모델에 통과하여 output을 내는데..
2022.02.17