부스트캠프
-
2022년 3월 7일(월)부터 11일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해나갈 예정입니다. 강의 자료의 저작권은 네이버 커넥트재단 부스트캠프 AI Tech에 있습니다. Collaborative Filtering(CF) 협업 필터링 많은 유저들로부터 얻은 기호 정보를 이용해 유저의 관심사를 자동으로 예측하는 방법 더 많은 유저와 아이템 데이터가 축적될수록 협업의 효과가 커지고 추천이 정확해질 것이라는 가정에서 출발한다. CF 기반 추천 시스템 최종 목적 유저 $u$가 아이템 $i$에 ..
Collaborative Filtering(협업 필터링)기반 추천 모델2022년 3월 7일(월)부터 11일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해나갈 예정입니다. 강의 자료의 저작권은 네이버 커넥트재단 부스트캠프 AI Tech에 있습니다. Collaborative Filtering(CF) 협업 필터링 많은 유저들로부터 얻은 기호 정보를 이용해 유저의 관심사를 자동으로 예측하는 방법 더 많은 유저와 아이템 데이터가 축적될수록 협업의 효과가 커지고 추천이 정확해질 것이라는 가정에서 출발한다. CF 기반 추천 시스템 최종 목적 유저 $u$가 아이템 $i$에 ..
2022.03.11 -
2022년 3월 7일(월)부터 11일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해나갈 예정입니다. 강의 자료의 저작권은 네이버 커넥트재단 부스트캠프 AI Tech에 있습니다. 추천 시스템 기법 딥러닝 모델 기반의 추천 시스템을 사용하는 건 CV, NLP 보다는 중요성이 떨어진다. 현업에서는 무거운 딥러닝 모델의 트래픽, latency 등 현실적인 문제로 인해 클래식한 머신러닝 모델도 많이 사용한다. 연관 분석 연관 규칙 분석 (Association Rule Analysis, Associat..
연관 분석과 TF-IDF를 활용한 콘텐츠 기반 추천2022년 3월 7일(월)부터 11일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해나갈 예정입니다. 강의 자료의 저작권은 네이버 커넥트재단 부스트캠프 AI Tech에 있습니다. 추천 시스템 기법 딥러닝 모델 기반의 추천 시스템을 사용하는 건 CV, NLP 보다는 중요성이 떨어진다. 현업에서는 무거운 딥러닝 모델의 트래픽, latency 등 현실적인 문제로 인해 클래식한 머신러닝 모델도 많이 사용한다. 연관 분석 연관 규칙 분석 (Association Rule Analysis, Associat..
2022.03.11 -
2022년 3월 7일(월)부터 11일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 개인적으로 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해 나갈 예정입니다. 추천 시스템이란? 서비스는 매우 많은 아이템으로 이루어져 있다. 이 매우 많은 아이템에서 사용자의 데이터를 기반으로 비즈니스 목적에 맞게 사용자가 선호할 만한 아이템을 추천하는 것이다. Search(검색)와 Recommendation(추천) 검색은 사용자가 의도를 가지고 아이템을 찾는 행위이다. 사용자의 의도가 담긴 쿼리(query)라는 키워드가 사용된다. 검색을 통해 아이템을 소..
추천 시스템에서 자주 사용하는 용어와 평가 지표2022년 3월 7일(월)부터 11일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 개인적으로 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해 나갈 예정입니다. 추천 시스템이란? 서비스는 매우 많은 아이템으로 이루어져 있다. 이 매우 많은 아이템에서 사용자의 데이터를 기반으로 비즈니스 목적에 맞게 사용자가 선호할 만한 아이템을 추천하는 것이다. Search(검색)와 Recommendation(추천) 검색은 사용자가 의도를 가지고 아이템을 찾는 행위이다. 사용자의 의도가 담긴 쿼리(query)라는 키워드가 사용된다. 검색을 통해 아이템을 소..
2022.03.11 -
2022년 2월 14일(월)부터 18일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해나갈 예정입니다. 강의 자료의 저작권은 네이버 커넥트재단 부스트캠프 AI Tech에 있습니다. 비정형 데이터셋에 사용할 수 있는 EDA & Visualization 일반적으로 비정형 데이터(이미지, 텍스트 등)에서는 다음과 같은 시각화를 해 볼 수 있다. Dataset meta data visualization 메타 데이터는 데이터 자체가 아니라 그 데이터에 대한 정보를 의미한다. 일반적으로는 target 값..
비정형 데이터 셋에서의 데이터 시각화2022년 2월 14일(월)부터 18일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해나갈 예정입니다. 강의 자료의 저작권은 네이버 커넥트재단 부스트캠프 AI Tech에 있습니다. 비정형 데이터셋에 사용할 수 있는 EDA & Visualization 일반적으로 비정형 데이터(이미지, 텍스트 등)에서는 다음과 같은 시각화를 해 볼 수 있다. Dataset meta data visualization 메타 데이터는 데이터 자체가 아니라 그 데이터에 대한 정보를 의미한다. 일반적으로는 target 값..
2022.02.18 -
2022년 2월 14일(월)부터 18일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해나갈 예정입니다. 강의 자료의 저작권은 네이버 커넥트재단 부스트캠프 AI Tech에 있습니다. Interactive Visualization Interactive를 사용하는 이유 정적 시각화의 장점 원하는 메시지를 압축해서 담을 수 있다는 장점이 있다. 정적 시각화의 단점 각각의 데이터를 살펴보는 것 뿐만이 아니라 관계를 살펴보는 데 많은 plot이 필요하는데, 이는 공간적 낭비가 크다. 또한 각각의 사용자가..
Interactive(인터렉티브) 시각화2022년 2월 14일(월)부터 18일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해나갈 예정입니다. 강의 자료의 저작권은 네이버 커넥트재단 부스트캠프 AI Tech에 있습니다. Interactive Visualization Interactive를 사용하는 이유 정적 시각화의 장점 원하는 메시지를 압축해서 담을 수 있다는 장점이 있다. 정적 시각화의 단점 각각의 데이터를 살펴보는 것 뿐만이 아니라 관계를 살펴보는 데 많은 plot이 필요하는데, 이는 공간적 낭비가 크다. 또한 각각의 사용자가..
2022.02.18 -
Generalization 학습된 모델이 다른 새로운 데이터에 관해서도 잘 작동하도록 하는 것이 일반화이다. 학습 Iteratiion이 늘어남으로 인해 무조건 training error가 낮아진다고 해서 test error도 낮아진다는 보장이 없다. Generalization Gap Training error와 test error의 차이로 인해 실제 테스트 결과가 검증 결과와 차이가 생기는 것이다. Overfitting 모델이 학습 데이터에 관해서만 너무 학습되어서 예측률이 떨어져서 새로운 데이터에 관해서는 좋은 결과를 보이지 못하는 현상이다. Underfitting Network가 단순하거나 일반화에 너무 치중한 나머지 모델이 학습 데이터에 관해 덜 학습된 현상이다. Cross-validation 데이..
딥 러닝에서의 일반화(Generalization)와 최적화(Optimization)Generalization 학습된 모델이 다른 새로운 데이터에 관해서도 잘 작동하도록 하는 것이 일반화이다. 학습 Iteratiion이 늘어남으로 인해 무조건 training error가 낮아진다고 해서 test error도 낮아진다는 보장이 없다. Generalization Gap Training error와 test error의 차이로 인해 실제 테스트 결과가 검증 결과와 차이가 생기는 것이다. Overfitting 모델이 학습 데이터에 관해서만 너무 학습되어서 예측률이 떨어져서 새로운 데이터에 관해서는 좋은 결과를 보이지 못하는 현상이다. Underfitting Network가 단순하거나 일반화에 너무 치중한 나머지 모델이 학습 데이터에 관해 덜 학습된 현상이다. Cross-validation 데이..
2022.02.16 -
2022년 2월 3일(목)부터 4일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 개인적으로 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해 나갈 예정입니다. Seaborn 파이썬 데이터 분석에서 한 번 즈음은 꼭 쓰게 되며, Matplotlib 기반의 통계 시각화 라이브러리이다. 구성, 분포 관계 등 통계 정보를 파악하는 데 유용하다. Matplotlib 기반이라서 Matplotlib으로 커스텀할 수 있다. 쉬운 문법과 깔끔한 디자인을 특징으로 갖는다. import seaborn as sns처럼 관용적으로 sns로 import 한다. 왜..
Matplotlib 기반의 시각화 라이브러리 Seaborn2022년 2월 3일(목)부터 4일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 개인적으로 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해 나갈 예정입니다. Seaborn 파이썬 데이터 분석에서 한 번 즈음은 꼭 쓰게 되며, Matplotlib 기반의 통계 시각화 라이브러리이다. 구성, 분포 관계 등 통계 정보를 파악하는 데 유용하다. Matplotlib 기반이라서 Matplotlib으로 커스텀할 수 있다. 쉬운 문법과 깔끔한 디자인을 특징으로 갖는다. import seaborn as sns처럼 관용적으로 sns로 import 한다. 왜..
2022.02.15 -
2022년 2월 3일(목)부터 4일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 개인적으로 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해 나갈 예정입니다. More Tips for Chart Grid 이해하기 기본적인 Grid는 축과 평행한 선을 사용하여 거리 및 값 정보를 보조적으로 제공한다. Grid의 요소 다음은 기본적인 Grid의 요소이다. color 색은 다른 표현들을 방해하지 않도록 무채색으로 만든다. zorder 항상 Layer 순서 상 맨 밑에 오도록 조정한다. 예시 코드 np.random.seed(970725) x = ..
Matplotlib 모듈로 Chart를 그리기 위한 팁2022년 2월 3일(목)부터 4일(금)까지 네이버 부스트캠프(boostcamp) AI Tech 강의를 들으면서 개인적으로 중요하다고 생각되거나 짚고 넘어가야 할 핵심 내용들만 간단하게 메모한 내용입니다. 틀리거나 설명이 부족한 내용이 있을 수 있으며, 이는 학습을 진행하면서 꾸준히 내용을 수정하거나 추가해 나갈 예정입니다. More Tips for Chart Grid 이해하기 기본적인 Grid는 축과 평행한 선을 사용하여 거리 및 값 정보를 보조적으로 제공한다. Grid의 요소 다음은 기본적인 Grid의 요소이다. color 색은 다른 표현들을 방해하지 않도록 무채색으로 만든다. zorder 항상 Layer 순서 상 맨 밑에 오도록 조정한다. 예시 코드 np.random.seed(970725) x = ..
2022.02.15