RNN 계열 모델인 LSTM을 여러개 이어서 encoder와 deocder로 만든 Seq2Seq에 관해 먼저 알아보고, 매 time step이 지날수록 이 Seq2Seq의 hidden state에 점차 많은 정보를 욱여넣게 되는 단점을 극복한 Seq2Seq with Attention에 관해 알아보고자 한다. 간단히 말하면 Seq2Seq with Attention은 decoder의 hidden state로 해당 time step에서의 결과를 내보낼 때, encoder의 어떠한 hidden state에 주목할지를 반영하여 해당 time step에서의 output을 내는 모델이다. Seq2Seq Seq2Seq란? Seq2Seq 모델은 RNN의 구조 중에서 many to many의 형태에 해당된다고 볼 수 있으..
Attention 기법을 사용한 Seq2Seq with Attention
RNN 계열 모델인 LSTM을 여러개 이어서 encoder와 deocder로 만든 Seq2Seq에 관해 먼저 알아보고, 매 time step이 지날수록 이 Seq2Seq의 hidden state에 점차 많은 정보를 욱여넣게 되는 단점을 극복한 Seq2Seq with Attention에 관해 알아보고자 한다. 간단히 말하면 Seq2Seq with Attention은 decoder의 hidden state로 해당 time step에서의 결과를 내보낼 때, encoder의 어떠한 hidden state에 주목할지를 반영하여 해당 time step에서의 output을 내는 모델이다. Seq2Seq Seq2Seq란? Seq2Seq 모델은 RNN의 구조 중에서 many to many의 형태에 해당된다고 볼 수 있으..
2022.07.14